翻訳と辞書
Words near each other
・ Mõnuste
・ Mõnuvere
・ Mõra
・ Mõraste
・ Mõrdu
・ Mõrsjalinik
・ Mõrtsi
・ Mõtsavaara
・ Mõtsküla
・ Mõtsu
・ Mõõlu
・ Mö Mboj Maalik Mboj
・ Möbelwagen
・ Möbius (crater)
・ Möbius (film)
Möbius aromaticity
・ Möbius configuration
・ Möbius Dick (Futurama)
・ Möbius energy
・ Möbius function
・ Möbius inversion formula
・ Möbius ladder
・ Möbius plane
・ Möbius resistor
・ Möbius sign
・ Möbius strip
・ Möbius syndrome
・ Möbius transformation
・ Möbius–Hückel concept
・ Möbius–Kantor configuration


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Möbius aromaticity : ウィキペディア英語版
Möbius aromaticity
In organic chemistry, Möbius aromaticity is a special type of aromaticity believed to exist in a number of organic molecules. In terms of molecular orbital theory these compounds have in common a monocyclic array of molecular orbitals in which there is an odd number of out-of-phase overlaps, the opposite pattern compared to the aromatic character to Hückel systems. The spatial configuration of the orbitals is reminiscent of a Möbius strip, hence the name. The smallest member of this class of compounds would be trans-benzene. Möbius molecular systems were considered in 1964 by Edgar Heilbronner by application of the Hückel method,〔''Hückel molecular orbitals of Möbius-type conformations of annulenes'' Tetrahedron Letters, Volume 5, Issue 29, 1964, Pages 1923-1928 E. Heilbronner 〕 but the first such compound was not synthesized until 2003 by the group of Rainer Herges.〔''Synthesis of a Möbius aromatic hydrocarbon'' D. Ajami, O. Oeckler, A. Simon, R. Herges Nature 426, 819-821 (18 December 2003) PMID 14685233〕
==Ansatz Wavefunction & Hückel-Möbius Energy==
For the Mobius geometry, the boundary conditions differ from the standard particle in a ring problem. Supposing to have a strip of length L_x and L_z, we can see that ''general'' Mobius boundary conditions for the \psi wavefunction are:
* \psi(x,0)=\psi(x,L_z)
* \psi(0,z)=\psi(L_x,-z)
or using the spherical azimuthal angle \phi:
:\psi(\phi)=-\psi(\phi+2\pi)
For an N-carbons, the proposed ansatz LCAO wavefunction is:
:|\rangle=\sum_^\rangle=\sum_^}\rangle=\sum_^^\lambda=-c_j^\lambda
Using this equation and the Euler rule we can find the right \lambda value satisfying previous boundary conditions:
:e^=-e^
:e^=-1
:\lambda_k=\frac\;\;\; k=0,1,2,\ldots,(N-1)
From the last equation we see that to fulfil the general boundary conditions, \lambda must be a half-integer number. The coefficients of the ansatz become:
:
c_j^=e^

From figure above, it can also be seen that the overlap between two consecutive p_z AOs is at a constant angle \omega=\pi/N, and for this reason resonance integral \beta^\prime it's considered as a constant into the Huckel matrix we will write later. It could be simply written as:
:\beta^\prime=\beta\cos(\pi/N)
where \beta is the standard Huckel’s resonance integral value (the one with \omega=0).
Nevertheless, the presence of a C_2 axis as the only symmetry element brings to a full phase change at the end of the ring, e.i. between the first and the N-th carbon atoms. For this reason, in the Huckel matrix the resonance integral between carbon 1 and N is -\beta^\prime.

For the generic N carbons Mobius system, the Huckel matrix \mathbf is:
:
\mathbf=
\begin
\alpha& \beta & 0 &\cdots& -\beta \\
\beta & \alpha& \beta & \cdots & 0 \\
0 & \beta & \alpha & \cdots & 0 \\
\vdots &\vdots &\vdots &\ddots &\vdots \\
-\beta &0& 0 & \cdots & \alpha
\end

Eigenvalues equation can now be solved. Since \mathbf is a N\times N matrix, we will have N eigenvalues E_k and N MOs. Defining the variable
:x_k=\frac
we have:
:
\begin
x_k& 1 & 0 &\cdots& -1 \\
1 & x_k& 1 & \cdots & 0 \\
0 & 1 & x_k & \cdots & 0 \\
\vdots &\vdots &\vdots &\ddots &\vdots \\
-1 &0& 0 & \cdots & x_k
\end
\cdot
\begin
c_1^ \\
c_2^ \\
c_3^ \\
\vdots\\
c_N^ \\
\end=0

Hence we obtain a system of N equations, in which the first one (k=0) and the last one (k=N-1) have a -1 coefficient:
:
\begin
x_0c_1^+c_2^-c_N^=0\\
\vdots\\
c_^+x_kc_j^+c_^=0\\
\vdots\\
c_^+x_c_N^-c_1^=0
\end

All these equations can be easily solved using Euler's rule, leading to
:
x_k=-2\cos}

hence
:
E_k=\alpha+2\beta^\prime\cos}=\alpha+2\beta^\prime\cos}


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Möbius aromaticity」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.